Disability premium – extraction of data from HESA student record

· Algorithm for institutions to use with Student entity merged with Engagement, Module, ModuleSubject, ModuleInstance, StudentCourseSession, FundingBody, Qualification and StudentFinancialSupport entities/sub-entities.
· Example for use with 2024/25 HESA data for 2026/27 funding.
· Modified SAS syntax in red.
· Variables taken from HESA record are expressed as Entity.FIELDNAME.
· Derived HESA fields are those that begin ‘Z_’.

Please also refer to further funding calculation guidance on the Data and Analysis page of the Medr website.

**
Notes:
· ne means not equal to.
· proc means procedure.
· =: means begins with.
**

1. Delete duplicate modules and modules that ended in previous year.
· Ensure only one row per module.
· nodupkey means delete duplicates with same values for fields stated in ‘by’ – ahead of this step, sort so that records with Z_LATESTSCSMRK = ‘1’ are being kept over Z_LATESTSCSMRK = ‘0’.
· Ensure credits for modules finishing before the start of the 2024/25 academic year are not being counted.

proc sort data = hesa;
by institution Engagement.Z_USN Module.MODID descending StudentCourseSession.Z_LATESTSCSMRK;

proc sort data = hesa out = hesa2 nodupkey;
by institution Engagement.Z_USN Module.MODID;

data hesa3
set hesa2

if 	ModuleInstance.MODINSTENDDATE ≤ 31Jul2024 and not blank then delete;

2. Sum credits by institution and Student.SID.
· Set credit points coded as missing to be 0.
· The credit sum is done separately for PGR and non-PGR students. This is because the PGR credit sum needs to take place at engagement level.
· If Engagement.Z_STULOAD_CYC ≥ 8.3 for PGR students give dummy credit value of 10 credits to meet eligibility criteria in algorithm.
· nodupkey means delete duplicates with same values of Engagement.Z_USN.
· The two ‘outcred’ datasets contain the total number of credits per student (totcred).
· The credit sum needs to be done before eligibility criteria are applied in step 6 to ensure credits are correctly summed.

if 	Module.CRDTPTS in (., 999) then Module.CRDTPTS=0;
if	Qualification.QUALCAT in (all ‘D’ codes, all ‘L’ codes) then do;

if Engagement.Z_STULOAD_CYC>=8.3 then Module.CRDTPTS=10; else Module.CRDTPTS = Engagement.Z_STULOAD_CYC * 10 / 8.3

proc sort nodupkey;
by Engagement.Z_USN;

proc summary;
by institution Student.SID;
var Module.CRDTPTS;
output out=outcred_pgr sum=totcred;

if	Qualification.QUALCAT not in (all ‘D’ codes, all ‘L’ codes) then do;

proc summary;
by institution Student.SID;
var Module.CRDTPTS;
output out=outcred_nonpgr sum=totcred;

3. Append the PGR and non-PGR credit sum tables.
· Students may appear in both datasets, so a second credit sum is performed to ensure there is only one credit sum (totcred) per student.

data outcred;
set outcred_pgr outcred_nonpgr;

proc summary;
by institution Student.SID;
var totcred;
output out=outcred sum=totcred;

4. Merge total credit dataset back onto individual instance dataset.

data merged;
merge hesa3 outcred;
by institution Student.SID;

5. Keep one student course session per engagement.

if	StudentCourseSession.Z_LATESTSCSMRK ne ‘1’ then delete;

6. Extract eligible students.
· variables taken from HESA record are expressed as Entity.FIELDNAME.
· For 2024/25 data all modes and levels are eligible for this premium.

data elig;
set merged;

where 	FundingBody.FUNDINGBODY = ‘5017’ and
 	Engagement.INCOMINGEXCHANGE ≠ ‘01’,‘02’,‘03’,‘04’ and
	StudentCourseSession.SCSMODE in (‘01’,’02’,’31’) and
Qualification.QUALCAT in (all ‘C’ codes, all ‘D’ codes, all ‘E’ codes, all ‘H’ codes, all ‘I’ codes, all ‘J’ codes, all ‘L’ codes, all ‘M’ codes);

7. Only include students active between 1 August 2024 and 31 July 2025 and not in the final academic year of a non-standard academic year course.
· AVDATE is anniversary of Engagement.ENGSTARTDATE in 2024/25.

if 	Engagement.ENGSTARTDATE ≤ 31Jul2025 and
	Leaver.ENGENDDATE ≥ 1Aug2024 or blank and not
	(Leaver.ENGENDDATE ≤ 31Jul2025 and
	Leaver.ENGENDDATE ≤ (AVDATE+14));

8. Reduce data to an engagement level.
· nodupkey means delete duplicates with same values for fields stated in ‘by’ – the record that appears first will be kept.

proc sort nodupkey;
by Engagement.Z_USN;

9. Delete duplicate students, keeping 1 entry with highest mode, level of study.
· Modules with StudentFinancialSupport.FINSUPTYPE=100 (in receipt of Disability Student Allowance) given priority in Disability_order.
· mod2 values of ‘FT, ‘PT’ derived using StudentCourseSession.SCSMODE according to HESES definitions, FT being highest mode.
· heslev values of ‘UG’, ‘PGT’ and ‘PGR’ derived using Qualification.QUALCAT according to HESES definitions, PGR being highest level.

Input data will be in the following form:

[image:]

Output will be in the following form:

[image:]

proc sort;
by institution Student.SID Disability_order mod2 heslev;

if	first.Student.SID=1 then keep;

10. Delete students studying less than 10 credit values.

if 	totcred<10 then delete;

11. Flag those students that are in receipt of DSA, and those not in receipt.

if 	StudentFinancialSupport.FINSUPTYPE=’100’ then disprem=1;
else ndisprem=1;

12. Count students who are eligible for DSA premium funding.
· Dataset ‘outtot’ contains counts by mode, level of study and institution.

proc summary;
by institution mod2 heslev;
var disprem ndisprem;
output out=outtot (keep=frequency) sum=disprem ndisprem;
image2.emf
Institution SID mod2 totcred

1 1 FT 140

1 2 PT 60

image1.emf
Institution SID mod2 CRDTPTS totcred

1 1 FT 60 140

1 1 FT 40 140

1 1 FT 20 140

1 1 PT 20 140

1 2 PT 10 60

1 2 PT 50 60

